TADB
TA family: mazEF
#OrganismLocus idToxinAntitoxinReplicon
1Bacillus anthracis str. Ames615 BA_0254BA_0253NC_003997
2Bacillus anthracis str. Sterne1499 BAS0240BAS0239NC_005945
3Bacillus cereus ATCC 109871348 BCE_0274BCE_0273NC_003909
4Bacillus cereus ATCC 14579719 BC0266BC0265NC_004722
5Bacillus cereus E33L1357 BCZK0228BCZK0227NC_006274
6Bacillus clausii KSM-K161116 ABC0809ABC0808NC_006582
7Bacillus halodurans C-125189 BH3721BH3720NC_002570
8Bacillus halodurans C-125184 BH0522BH0521NC_002570
9Bacillus subtilis subsp. subtilis str. 168134 BSU04660BSU04650NC_000964
10Bacillus thuringiensis serovar konkukian str. 97-271603 BT9727_0226BT9727_0225NC_005957
11Bartonella henselae str. Houston-11650 BH07060BH07050NC_005956
12Clostridium acetobutylicum ATCC 824330 CA_C0494CA_C0493NC_003030
13Clostridium perfringens str. 13540 CPE0295CPE0294NC_003366
14Deinococcus radiodurans R1137 experimental DR_0417DR_0416NC_001263
15Deinococcus radiodurans R1140 DR_0662DR_0661NC_001263
16Desulfovibrio vulgaris str. Hildenborough1664 DVU1509DVU1510NC_002937
17Enterococcus faecalis V5831032 EF3262EF3261NC_004668
18Escherichia coli O157:H7 str. EDL933203 Z5836Z5835NC_002655
19Escherichia coli O157:H7 str. EDL933195 Z4097Z4098NC_002655
20Escherichia coli O157:H7 str. Sakai1011 ECs3642ECs3643NC_002695
21Escherichia coli O157:H7 str. Sakai1019 ECs5203ECs5202NC_002695
22Escherichia coli str. K-12 substr. MG16551044 experimental b2782b2783NC_000913
23Geobacillus kaustophilus HTA4261181 GK1648GK1647NC_006510
24Geobacillus kaustophilus HTA4261180 GK0233GK0232NC_006510
25Geobacter sulfurreducens PCA1531 GSU0736GSU0737NC_002939
26Geobacter uraniireducens Rf43977 Gura_2716Gura_2715NC_009483
27Gloeobacter violaceus PCC 74211408 glr0096gsr0095NC_005125
28Gloeobacter violaceus PCC 74211415 glr0631gsr0630NC_005125
29Gloeobacter violaceus PCC 74211441 glr2288gsr2287NC_005125
30Gloeobacter violaceus PCC 74211468 glr4050gsr4049NC_005125
31Gloeobacter violaceus PCC 74211409 glr0126gsr0125NC_005125
32Lactobacillus acidophilus NCFM1671 LBA1405LBA1406NC_006814
33Lactobacillus johnsonii NCC 5331728 LJ0589LJ0588NC_005362
34Lactobacillus plantarum WCFS1699 lp_2882lp_2883NC_004567
35Lactobacillus rhamnosus ATCC 85306142 LRHK_2454LRHK_2455NC_017491
36Lactobacillus rhamnosus Lc 7056137 LC705_02444LC705_02445NC_013199
37Leptospira interrogans serovar Copenhageni str. Fiocruz L1-1301516 LIC11193LIC11192NC_005823
38Leptospira interrogans serovar Lai str. 56601653 LA_1781LA_1780NC_004342
39Leptospira interrogans serovar Lai str. 56601655 LA_2843LA_2844NC_004342
40Listeria innocua Clip11262789 lin0887lin0886NC_003212
41Listeria monocytogenes EGD-e744 lmo0888lmo0887NC_003210
42Methylococcus capsulatus str. Bath1722 MCA3007MCA3006NC_002977
43Mycobacterium bovis AF2122/971147 Mb1977cMb1978cNC_002945
44Mycobacterium bovis AF2122/971137 Mb1132cMb1133cNC_002945
45Mycobacterium bovis AF2122/971132 Mb0678cMb0679cNC_002945
46Mycobacterium bovis AF2122/971142 Mb1532Mb1531NC_002945
47Mycobacterium tuberculosis CDC1551252 MT1134MT1135NC_002755
48Mycobacterium tuberculosis CDC1551256 MT1542MT1541NC_002755
49Mycobacterium tuberculosis CDC1551267 MT2046MT2047NC_002755
50Mycobacterium tuberculosis CDC1551246 MT0688MT0689NC_002755
51Mycobacterium tuberculosis H37Rv101 experimental Rv1942cRv1943cNC_000962
52Mycobacterium tuberculosis H37Rv84 experimental Rv0659cRv0660cNC_000962
53Mycobacterium tuberculosis H37Rv90 experimental Rv1102cRv1103cNC_000962
54Mycobacterium tuberculosis H37Rv95 Rv1495Rv1494NC_000962
55Neisseria meningitidis MC58408 NMB2038NMB2037NC_003112
56Neisseria meningitidis MC58403 NMB0913NMB0914NC_003112
57Nitrosomonas europaea ATCC 19718927 NE1579NE1580NC_004757
58Nitrosomonas europaea ATCC 19718911 experimental NE1181NE1182NC_004757
59Nitrosomonas europaea ATCC 19718903 NE0974NE0975NC_004757
60Nocardia farcinica IFM 101521083 nfa7690nfa7700NC_006361
61Nostoc sp. PCC 7120 (Anabaena sp. PCC 7120)459 alr0758asr0757NC_003272
62Nostoc sp. PCC 7120 (Anabaena sp. PCC 7120)453 all0337asl0338NC_003272
63Nostoc sp. PCC 7120 (Anabaena sp. PCC 7120)480 all3211asl3212NC_003272
64Nostoc sp. PCC 7120 (Anabaena sp. PCC 7120)495 alr4921asr4920NC_003272
65Oceanobacillus iheyensis HTE831640 OB0623OB0622NC_004193
66Pectobacterium atrosepticum SCRI10431108 ECA1676ECA1677NC_004547
67Pectobacterium atrosepticum SCRI10431104 ECA0582ECA0583NC_004547
68Photorhabdus luminescens subsp. laumondii TTO11223 plu2365plu2366NC_005126
69Pseudomonas aeruginosa PA16283 PA1S_RS06915PA1S_RS06910NC_022808
70Pseudomonas putida KT2440302 PP_0771PP_0770NC_002947
71Rhodopseudomonas palustris CGA0091477 RPA0941RPA0942NC_005296
72Rickettsia conorii str. Malish 7350 RC0006RC0007NC_003103
73Rickettsia conorii str. Malish 7361 RC1143RC1154NC_003103
74Shigella flexneri 2a str. 301651 SF3434SF3433NC_004337
75Staphylococcus aureus6091 experimental SACH_a18SACH_a19NC_020227
76Staphylococcus aureus subsp. aureus COL1277 SACOL2058SACOL2059NC_002951
77Staphylococcus aureus subsp. aureus MRSA2521538 SAR2156SAR2157NC_002952
78Staphylococcus aureus subsp. aureus MSSA4761382 SAS1973SAS1974NC_002953
79Staphylococcus aureus subsp. aureus Mu50295 SAV2068SAV2069NC_002758
80Staphylococcus aureus subsp. aureus MW2612 MW1992MW1993NC_003923
81Staphylococcus aureus subsp. aureus N3151073 experimental SA1873SAS067NC_002745
82Staphylococcus epidermidis ATCC 12228993 SE1672SE1673NC_004461
83Staphylococcus epidermidis RP62A1342 SERP1681SERP1682NC_002976
84Streptococcus mutans UA159663 experimental SMU_173SMU_172NC_004350
85Symbiobacterium thermophilum IAM 148631344 STH2934STH2935NC_006177
86Synechococcus sp. WH 81021274 SYNW2381SYNW2380NC_005070
87Synechocystis sp. PCC 6803968 sll1130ssl2245NC_000911
88Thermoanaerobacter tengcongensis MB4 (Caldanaerobacter subterraneus)772 TTE2166TTE2167NC_003869
89Thermococcus kodakarensis KOD11596 TK1816TK1815NC_006624
90Thermococcus kodakarensis KOD11582 TK1069TK1068NC_006624
91Treponema denticola ATCC 354051715 TDE2564TDE2563NC_002967
92Treponema denticola ATCC 354051712 TDE2247TDE2246NC_002967
93Xylella fastidiosa 9a5c155 XF1862XF1863NC_002488

experimental Data derived from experimental literature
The chromosomal mazEF and chpB loci are homologues of plasmid-born parD. The toxins (MazF and ChpBK) cleave mRNA during amino-acid starvation and thereby reduce the poststarvation rate-of-translation. The antitoxins (MazE and ChpBI) neutralize the cognate toxins.
Conserved Domain
Accession No.NameRelation/involvement in TA lociReference
COG2002AbrBDomain present in of MazE and VapB antitoxinsPubMed:17678530
COG2336MazEGrowth regulator (antitoxin)PubMed:17678530
COG2337MazFGrowth inhibitor (toxin)PubMed:17678530
pfam02452PemKToxin of the MazEF familyPubMed:17678530
pfam04014AbrBDomain present in MazE and VapB antitoxinsPubMed:17678530


Structure
crystal structure of MazEF complex [ PDB ID: 1UB4] [PudMed:12718874]
(1) Engelberg-Kulka H et al. (1998) rexB of bacteriophage lambda is an anti-cell death gene. Proc Natl Acad Sci U S A 95(26):15481-6. [PudMed:9860994] experimental
(2) Aizenman E et al. (1996) An Escherichia coli chromosomal "addiction module" regulated by guanosine[corrected] 3',5'-bispyrophosphate: a model for programmed bacterial cell death. Proc Natl Acad Sci U S A 93(12):6059-63. [PudMed:8650219] experimental
(3) Syed MA et al. (2011) The Chromosomal mazEF Locus of Streptococcus mutans Encodes a Functional Type II Toxin-Antitoxin Addiction System. J Bacteriol. 193(5):1122-30. [PudMed:21183668] experimental
(4) Han X et al. (2011) The role of Escherichia coli YrbB in the lethal action of quinolones. J Antimicrob Chemother. 66(2):323-31. [PudMed:21098540] experimental
(5) Han JS et al. (2010) Characterization of a chromosomal toxin-antitoxin, Rv1102c-Rv1103c system in Mycobacterium tuberculosis. Biochem Biophys Res Commun 400(3):293-8. [PudMed:20705052] experimental
(6) Donegan NP et al. (2010) Proteolytic regulation of toxin-antitoxin systems by ClpPC in Staphylococcusaureus. J Bacteriol 192(5):1416-22. [PudMed:20038589] experimental
(7) Kolodkin-Gal I et al. (2009) A differential effect of E. coli toxin-antitoxin systems on cell death in liquidmedia and biofilm formation. PLoS One 4(8):e6785. [PudMed:19707553] experimental
(8) Engelberg-Kulka H et al. (2009) Activation of a built-in bacterial programmed cell death system as a novelmechanism of action of some antibiotics. Commun Integr Biol 2(3):211-2. [PudMed:19641731] experimental
(9) Drobnak I et al. (2009) Energetics of MazG unfolding in correlation with its structural features. J Mol Biol 392(1):63-74. [PudMed:19523960] experimental
(10) Amitai S et al. (2009) Escherichia coli MazF leads to the simultaneous selective synthesis of both"death proteins" and "survival proteins". PLoS Genet 5(3):e1000390. [PudMed:19282968] experimental
(11) Zhu L et al. (2009) Staphylococcus aureus MazF specifically cleaves a pentad sequence, UACAU, whichis unusually abundant in the mRNA for pathogenic adhesive factor SraP. J Bacteriol 191(10):3248-55. [PudMed:19251861] experimental
(12) Kolodkin-Gal I et al. (2009) The stationary-phase sigma factor sigma(S) is responsible for the resistance ofEscherichia coli stationary-phase cells to mazEF-mediated cell death. J Bacteriol 191(9):3177-82. [PudMed:19251848] experimental
(13) Donegan NP et al. (2009) Regulation of the mazEF toxin-antitoxin module in Staphylococcus aureus and itsimpact on sigB expression. J Bacteriol 191(8):2795-805. [PudMed:19181798] experimental
(14) Fu Z et al. (2009) Overexpression of MazFsa in Staphylococcus aureus induces bacteriostasis by selectively targeting mRNAs for cleavage. J Bacteriol. 191(7):2051-9. [PudMed:19168622] experimental
(15) Kolodkin-Gal I et al. (2008) The communication factor EDF and the toxin-antitoxin module mazEF determine themode of action of antibiotics. PLoS Biol 6(12):e319. [PudMed:19090622] experimental
(16) Ahmadi M et al. (2007) The effect of heat stress on the antibacterial resistance and plasmid profile inEscherichia coli isolates. Pak J Biol Sci 10(23):4261-5. [PudMed:19086582] experimental
(17) Christensen-Dalsgaard M et al. (2008) Translation affects YoeB and MazF messenger RNA interferase activities by different mechanisms. Nucleic Acids Res. 36(20):6472-81. [PudMed:18854355] experimental
(18) Chan LL et al. (2008) A general method for discovering inhibitors of protein-DNA interactions usingphotonic crystal biosensors. ACS Chem Biol 3(7):437-48. [PudMed:18582039] experimental
(19) Lee S et al. (2008) Crystal structure of Escherichia coli MazG, the regulator of nutritional stressresponse. J Biol Chem 283(22):15232-40. [PudMed:18353782] 3D_structure
(20) Kolodkin-Gal I et al. (2008) The extracellular death factor: physiological and genetic factors influencingits production and response in Escherichia coli. J Bacteriol 190(9):3169-75. [PudMed:18310334] experimental
(21) Li X et al. (2008) Cleavage of mRNAs and role of tmRNA system under amino acid starvation in Escherichia coli. Mol Microbiol. 68(2):462-73.. [PudMed:18284591] experimental
(22) Nariya H et al. (2008) MazF, an mRNA interferase, mediates programmed cell death during multicellularMyxococcus development. Cell 132(1):55-66. [PudMed:18191220] experimental
(23) Kolodkin-Gal I et al. (2007) A linear pentapeptide is a quorum-sensing factor required for mazEF-mediatedcell death in Escherichia coli. Science 318(5850):652-5. [PudMed:17962566] experimental
(24) Fu Z et al. (2007) Characterization of MazFSa, an endoribonuclease from Staphylococcus aureus. J Bacteriol 189(24):8871-9. [PudMed:17933891] experimental
(25) Wang NR et al. (2007) A continuous fluorometric assay for the assessment of MazF ribonucleaseactivity. Anal Biochem 371(2):173-83. [PudMed:17706586] experimental
(26) Agarwal S et al. (2007) Identification and characterization of a novel toxin-antitoxin module from Bacillus anthracis. FEBS Lett. 581(9):1727-34. [PudMed:17416361] experimental
(27) Gvakharia BO et al. (2007) Global transcriptional response of Nitrosomonas europaea to chloroform and chloromethane. Appl Environ Microbiol. 73(10):3440-5. [PudMed:17369330] experimental
(28) Shang ZL et al. (2007) [Molecular cloning and expression of hypothetical proteins Rv1494 and Rv1495 ofM.tuberculosis H37Rv strain.] Nan Fang Yi Ke Da Xue Xue Bao 27(1):15-9. [PudMed:17259135] experimental
(29) Moritz EM et al. (2007) Toxin-antitoxin systems are ubiquitous and plasmid-encoded invancomycin-resistant enterococci. Proc Natl Acad Sci U S A 104(1):311-6. [PudMed:17190821] experimental
(30) Engelberg-Kulka H et al. (2006) Bacterial programmed cell death and multicellular behavior in bacteria. PLoS Genet 2(10):e135. [PudMed:17069462]
(31) Cruzeiro-Silva C et al. (2006) In-Cell NMR spectroscopy: inhibition of autologous protein expression reducesEscherichia coli lysis. Cell Biochem Biophys 44(3):497-502. [PudMed:16679537] experimental
(32) Kolodkin-Gal I et al. (2006) Induction of Escherichia coli chromosomal mazEF by stressful conditions causesan irreversible loss of viability. J Bacteriol 188(9):3420-3. [PudMed:16621839] experimental
(33) Gross M et al. (2006) MazG -- a regulator of programmed cell death in Escherichia coli. Mol Microbiol 59(2):590-601. [PudMed:16390452] experimental
(34) Engelberg-Kulka H et al. (2005) mazEF: a chromosomal toxin-antitoxin module that triggers programmed cell deathin bacteria. J Cell Sci 118(Pt 19):4327-32. [PudMed:16179604]
(35) Lah J et al. (2005) Energetics of structural transitions of the addiction antitoxin MazE: is aprogrammed bacterial cell death dependent on the intrinsically flexible natureof the antitoxins? J Biol Chem 280(17):17397-407. [PudMed:15735309] experimental
(36) Amitai S et al. (2004) MazF-mediated cell death in Escherichia coli: a point of no return. J Bacteriol 186(24):8295-300. [PudMed:15576778] experimental
(37) Hazan R et al. (2004) Escherichia coli mazEF-mediated cell death as a defense mechanism that inhibitsthe spread of phage P1. Mol Genet Genomics 272(2):227-34. [PudMed:15316771] experimental
(38) Munoz-Gomez AJ et al. (2004) Insights into the specificity of RNA cleavage by the Escherichia coli MazFtoxin. FEBS Lett 567(2-3):316-20. [PudMed:15178344] experimental
(39) Hazan R et al. (2004) Escherichia coli mazEF-mediated cell death is triggered by various stressfulconditions. J Bacteriol 186(11):3663-9. [PudMed:15150257] experimental
(40) Engelberg-Kulka H et al. (2004) Bacterial programmed cell death systems as targets for antibiotics. Trends Microbiol 12(2):66-71. [PudMed:15036322]
(41) Deane SM et al. (2004) Plasmid evolution and interaction between the plasmid addiction stabilitysystems of two related broad-host-range IncQ-like plasmids. J Bacteriol 186(7):2123-33. [PudMed:15028698] experimental
(42) Zhang J et al. (2004) Interference of mRNA function by sequence-specific endoribonuclease PemK. J Biol Chem 279(20):20678-84. [PudMed:15024022] experimental
(43) Zhang Y et al. (2003) MazF cleaves cellular mRNAs specifically at ACA to block protein synthesis inEscherichia coli. Mol Cell 12(4):913-23. [PudMed:14580342] experimental
(44) Christensen SK et al. (2003) Toxin-antitoxin loci as stress-response-elements: ChpAK/MazF and ChpBK cleavetranslated RNAs and are counteracted by tmRNA. J Mol Biol 332(4):809-19. [PudMed:12972253] experimental
(45) Kamada K et al. (2003) Crystal structure of the MazE/MazF complex: molecular bases of antidote-toxinrecognition. Mol Cell 11(4):875-84. [PudMed:12718874] 3D_structure
(46) Lah J et al. (2003) Recognition of the intrinsically flexible addiction antidote MazE by a dromedarysingle domain antibody fragment. Structure, thermodynamics of binding,stability, and influence on interactions with DNA. J Biol Chem 278(16):14101-11. [PudMed:12533537] 3D_structure
(47) Hazan R et al. (2001) Postsegregational killing mediated by the P1 phage "addiction module" phd-docrequires the Escherichia coli programmed cell death system mazEF. J Bacteriol 183(6):2046-50. [PudMed:11222604] experimental
(48) Sat B et al. (2001) Programmed cell death in Escherichia coli: some antibiotics can trigger mazEFlethality. J Bacteriol 183(6):2041-5. [PudMed:11222603] experimental
(49) Marianovsky I et al. (2001) The regulation of the Escherichia coli mazEF promoter involves an unusualalternating palindrome. J Biol Chem 276(8):5975-84. [PudMed:11071896] experimental
(50) Mittenhuber G. (1999) Occurrence of mazEF-like antitoxin/toxin systems in bacteria. J Mol Microbiol Biotechnol 1(2):295-302. [PudMed:10943559] in_silico
 
experimental experimental literature
in_silico in silico analysis literature
3D_structure protein structure literature