TA family: ccd
#OrganismLocus idToxinAntitoxinReplicon
1Escherichia coli CFT073671 c0060c0059NC_004431
2Escherichia coli O157:H7 str. EDL933190 Z0057Z0056NC_002655
3Escherichia coli O157:H7 str. Sakai1002 ECs0053ECs0052NC_002695
4Nitrosomonas europaea ATCC 19718907 NE1076NE1077NC_004757
5Photorhabdus luminescens subsp. laumondii TTO11213 plu2155plu2154NC_005126
6Photorhabdus luminescens subsp. laumondii TTO11219 plu2279plu2278NC_005126
7Photorhabdus luminescens subsp. laumondii TTO11242 plu4296plu4295NC_005126
8uncultured bacterium6109 pRSB225_2pRSB225_1NC_025100
9Xanthomonas campestris pv. campestris str. ATCC 33913605 XCC0714XCC0715NC_003902
The ccd (coupled cell division) locus was firstly identified near the replication origin of the F plasmid. Recently it was shown that ccd increases plasmid stability by inhibiting the growth of plasmid-free daughter cells [PubMed:1657989].
Conserved Domain
Accession No.NameRelation/involvement in TA lociReference
COG5302CcdAAntitoxin of plasmid stabilization systemPubMed:17678530
pfam01845CcdBToxin of plasmid stabilization systemPubMed:17678530
pfam07362CcdAAntitoxin of plasmid stabilization systemPubMed:17678530
COG3609COG3609CopG/Arc/MetJ DNA-binding domain, present in RelB, ParD, VapBC and CcdA antitoxinsPubMed:17678530

NMR solution structure of Vibrio fischeri CcdB [ PDB ID: 2KMT] [PudMed:19959472]
CcdBVfi-FormII-pH5.6. X-RAY DIFFRACTION with resolution of 1.70 Å [ PDB ID: 3JRZ] [PudMed:19959472]
CcdBVfi-FormI-pH7.0. X-RAY DIFFRACTION with resolution of 1.50 Å [ PDB ID: 3JSC] [PudMed:19959472]
CcdB dimer in complex with two C-terminal CcdA domains. [ PDB ID: 3G7Z] [PudMed:19647513]
CcdB dimer in complex with one C-terminal CcdA domain. [ PDB ID: 3HPW] [PudMed:19647513]
Crystal structure of CcdB, a topoisomerase poison from E. coli. [ PDB ID: 3VUB] [PudMed:9917404]
Structural basis for nucleic acid and toxin recognition of the bacterial antitoxin CcdA [ PDB ID: 2H3C] [PudMed:17007877]
Solution structure of the bacterial antitoxin CcdA: Implications for DNA and toxin binding. CcdA conformer a [ PDB ID: 2ADL] [PudMed:17007877]
Solution structure of the bacterial antitoxin CcdA: Implications for DNA and toxin binding [ PDB ID: 2ADN] [PudMed:17007877]
Structural basis for nucleic acid and toxin recognition of the bacterial antitoxin CcdA. CcdA conformer a in complex with DNA12 [ PDB ID: 2H3A] [PudMed:17007877]
Molecular basis of gyrase poisoning by the addiction toxin CcdB. CcdB:GyrA14 complex [ PDB ID: 1X75] [PudMed:15854646]
(1) Loris R et al. (1999) Crystal structure of CcdB, a topoisomerase poison from E. coli. J Mol Biol. 285(4):1667-77.. [PudMed:9917404] 3D_structure
(2) Hu LL et al. (2010) The use of the ccdB lethal gene for constructing a zero background vector inorder to clone blunt-end PCR products. Mol Biol (Mosk) 44(1):174-6. [PudMed:20198872]
(3) Ruiz-Echevarria MJ et al. (1991) Structural and functional comparison between the stability systems ParD ofplasmid R1 and Ccd of plasmid F. Mol Gen Genet 225(3):355-62. [PudMed:2017133] experimental
(4) De Jonge N et al. (2010) Structural and thermodynamic characterization of Vibrio fischeri CcdB. J Biol Chem 285(8):5606-13. [PudMed:19959472] 3D_structure
(5) Lepka D et al. (2009) Adding to Yersinia enterocolitica gene pool diversity: two cryptic plasmids froma biotype 1A isolate. J Biomed Biotechnol 2009:398434. [PudMed:19834620]
(6) De Jonge N et al. (2009) Rejuvenation of CcdB-poisoned gyrase by an intrinsically disordered proteindomain. Mol Cell 35(2):154-63. [PudMed:19647513] experimental
(7) Respondek M et al. (2009) Sequence-specific 1H, 15N and 13C resonance assignments of the 23.7-kDahomodimeric toxin CcdB from Vibrio fischeri. Biomol NMR Assign 3(1):145-7. [PudMed:19636967] experimental
(8) Simic M et al. (2009) Driving forces of gyrase recognition by the addiction toxin CcdB. J Biol Chem 284(30):20002-10. [PudMed:19465484] experimental
(9) Mine N et al. (2009) The decay of the chromosomally encoded ccdO157 toxin-antitoxin system in theEscherichia coli species. Genetics 181(4):1557-66. [PudMed:19189956] experimental
(10) Bajaj K et al. (2008) Structural correlates of the temperature sensitive phenotype derived fromsaturation mutagenesis studies of CcdB. Biochemistry 47(49):12964-73. [PudMed:19006334] experimental
(11) Trovatti E et al. (2008) Peptides based on CcdB protein as novel inhibitors of bacterial topoisomerases. Bioorg Med Chem Lett 18(23):6161-4. [PudMed:18938079] experimental
(12) Guglielmini J et al. (2008) Automated discovery and phylogenetic analysis of new toxin-antitoxin systems. BMC Microbiol 8:104. [PudMed:18578869] in_silico
(13) Saavedra De Bast M et al. (2008) Chromosomal toxin-antitoxin systems may act as antiaddiction modules. J Bacteriol 190(13):4603-9. [PudMed:18441063] experimental
(14) Bajaj K et al. (2007) Stereochemical criteria for prediction of the effects of proline mutations onprotein stability. PLoS Comput Biol 3(12):e241. [PudMed:18069886] in_silico
(15) De Jonge N et al. (2007) Purification and crystallization of Vibrio fischeri CcdB and its complexes withfragments of gyrase and CcdA. Acta Crystallogr Sect F Struct Biol Cryst Commun 63(Pt 4):356-60. [PudMed:17401216] 3D_structure
(16) Wilbaux M et al. (2007) Functional interactions between coexisting toxin-antitoxin systems of the ccdfamily in Escherichia coli O157:H7. J Bacteriol 189(7):2712-9. [PudMed:17259320] experimental
(17) Mondal K et al. (2007) Role of stimuli-sensitive polymers in protein refolding: alpha-amylase and CcdB(controller of cell division or death B) as model proteins. Langmuir 23(1):70-5. [PudMed:17190487] experimental
(18) Madl T et al. (2006) Structural basis for nucleic acid and toxin recognition of the bacterialantitoxin CcdA. J Mol Biol 364(2):170-85. [PudMed:17007877] 3D_structure
(19) Smith AB et al. (2006) A strand-passage conformation of DNA gyrase is required to allow the bacterialtoxin, CcdB, to access its binding site. Nucleic Acids Res 34(17):4667-76. [PudMed:16963775] experimental
(20) Umanskaya ON et al. (2006) Inhibition of DNA topoisomerase II may trigger illegitimate recombination inliving cells: experiments with a model system. J Cell Biochem 99(2):598-608. [PudMed:16676353] experimental
(21) Aguirre-Ramirez M et al. (2006) Expression of the F plasmid ccd toxin-antitoxin system in Escherichia coli cellsunder nutritional stress. Can J Microbiol 52(1):24-30. [PudMed:16541156] experimental
(22) Buts L et al. (2005) Crystallization of the C-terminal domain of the addiction antidote CcdA incomplex with its toxin CcdB. Acta Crystallogr Sect F Struct Biol Cryst Commun 61(Pt 10):949-52. [PudMed:16511204] 3D_structure
(23) Bajaj K et al. (2005) Mutagenesis-based definitions and probes of residue burial in proteins. Proc Natl Acad Sci U S A 102(45):16221-6. [PudMed:16251276] experimental
(24) Szpirer CY et al. (2005) Separate-component-stabilization system for protein and DNA production withoutthe use of antibiotics. Biotechniques 38(5):775-81. [PudMed:15945374] experimental
(25) Dao-Thi MH et al. (2005) Molecular basis of gyrase poisoning by the addiction toxin CcdB. J Mol Biol 348(5):1091-102. [PudMed:15854646] 3D_structure
(26) Bhinge A et al. (2004) Accurate detection of protein:ligand binding sites using molecular dynamicssimulations. Structure 12(11):1989-99. [PudMed:15530363] in_silico
(27) Dao-Thi MH et al. (2004) Crystallization of CcdB in complex with a GyrA fragment. Acta Crystallogr D Biol Crystallogr 60(Pt 6):1132-421. . [PudMed:15159578] 3D_structure
(28) Chakshusmathi G et al. (2004) Design of temperature-sensitive mutants solely from amino acid sequence. Proc Natl Acad Sci U S A 101(21):7925-30. [PudMed:15148363]
(29) Bajaj K et al. (2004) Thermodynamic characterization of monomeric and dimeric forms of CcdB(controller of cell division or death B protein). Biochem J 380(Pt 2):409-17. [PudMed:14763902] experimental
(30) Parr RD et al. (2003) New donor vector for generation of histidine-tagged fusion proteins using theGateway Cloning System. Plasmid 49(2):179-83. [PudMed:12726771]
(31) Barrett JF. (2001) Targeting DNA gyrase. Expert Opin Ther Targets 5(4):531-533. [PudMed:12540265]
(32) Allali N et al. (2002) The highly conserved TldD and TldE proteins of Escherichia coli are involved inmicrocin B17 processing and in CcdA degradation. J Bacteriol 184(12):3224-31. [PudMed:12029038] experimental
(33) Van Melderen L. (2002) Molecular interactions of the CcdB poison with its bacterial target, the DNAgyrase. Int J Med Microbiol 291(6-7):537-44. [PudMed:11890555]
(34) Lew BM et al. (2002) An in vivo screening system against protein splicing useful for the isolation ofnon-splicing mutants or inhibitors of the RecA intein of Mycobacteriumtuberculosis. Gene 282(1-2):169-77. [PudMed:11814689] experimental
(35) Dao-Thi MH et al. (2002) Intricate interactions within the ccd plasmid addiction system. J Biol Chem 277(5):3733-42. [PudMed:11741897] experimental
(36) Chatterji M et al. (2001) Effect of different classes of inhibitors on DNA gyrase from Mycobacteriumsmegmatis. J Antimicrob Chemother 48(4):479-85. [PudMed:11581225] experimental
(37) Afif H et al. (2001) The ratio between CcdA and CcdB modulates the transcriptional repression of theccd poison-antidote system. Mol Microbiol 41(1):73-82. [PudMed:11454201] experimental
experimental experimental literature
in_silico in silico analysis literature
3D_structure protein structure literature